
One Dimensional Examples 1

Kaito Takahashi



Time Independent Hamiltonian
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If the Hamiltonian Operator does not have time dependence 
then the time dependent problem is transferred to a time 
independent problem of finding the eigenfunction and 
eigenvalue of the Hamiltonian operator



Making Hamiltonian of Free Motion
Free Particle Motion: Particle moving with out any restriction by a potential

Has only kinetic energy called translational motion

Classical Hamiltonian
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Solving Free Particle SE
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A,B are constants and k is the label for the eigenfunction and 
eigenvalue

k can take any value eigenvalues of free particle are continuous 

Write the wavefunction as a function of cos and sin
What is the wave length of the wavefunction



Energy and Momentum
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Wave function of the free translation motion has exact magnitude for 
momentum, but the direction is arbitrary depends on the value of the 
coefficients
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If B=0
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Particle In a Box Hamiltonian
Motion of the particle limited by a wall
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( ) LxxforxV ≥≤∞= ,0       

Inside the box is free particle

If the potential energy is infinity there is 0 
probability of existance
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Solving Particle in a Box
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Only integer values

Eigenvalue defined by integer values of n
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Obtain the normalization Constant C
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n=0 is not allowed!  Zero Point Energy



Property of Solution
What is the average value of the position and 
momentum for the nth state?
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What is the physical meaning of the above finding?



Orthogonality
Show that n=3 and n=4 wavefunctions are orthogonal

Correspondence to classical 
mechanics
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Notice that at low energies 
the  distribution is localized 
however as the energy 
increases the distribution 
becomes closer to uniform 
distribution.
Which is closer to the 
classical picture?

Wavefunction
Probability Density



Boundary Condition and 
Quantization

The energy is quantized due to the fact that the 
wavefunction is zero at boundaries 
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Box with a Constant Potential Energy
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If the potential energy is infinity there is 0 
probability of existance

( ) L and 0for       0 ≥≤= xxkψ

Lxfor <<0  

What is the solution for E>V ?
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Penetration of a Barrier 1
What are the general 
answer in each zone?
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Penetration of a Barrier 2
Consider E<V: In classical sense no transmission between 
zone 1 and zone3
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Zone 2 How do we find values of coef?

From the connection of wave 
function
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Penetration of Barrier 3
Continuation of Wavefunction and its derivative
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What are the conditions that are possible? 



Penetration of Barrier 4
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Now we assume that the initial state of the particle is 
approaching the barrier from the left B” is zero
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Penetration of Barrier 5
From the afore mentioned conditions show that 
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Transmission probability T is the ration of the probability 
travelling to right in zone 3 versus zone 1
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Penetration of Barrier 6
Values are for η/2mVL

For wide and large barriers transmision is small
Transmission probability decays with square root of mass
TUNNELING is important for light particles


