One Dimensional Examples 1

Kaito Takahashi



Time Independent Hamiltonian
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If the Hamiltonian Operator does not have time dependence
then the time dependent problem is transferred to a time
Independent problem of finding the eigenfunction and
eigenvalue of the Hamiltonian operator



Making Hamiltonian of Free Motion

Free Particle Motion: Particle moving with out any restriction by a potential

Has only kinetic energy called translational motion
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Solving Free Particle SE
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k2n2
" 2m

A,B are constants and k is the label for the eigenfunction and
eigenvalue

v, (x)= AExp(ikx )+ BExp(—ikx) E,

k can take any value eigenvalues of free particle are continuous

Write the wavefunction as a function of cos and sin
What is the wave length of the wavefunction



Energy and Momentum
K, B, |=222

v, (x)= AExp(ikx )+ BExp(—ikx)

TB=0 If A=0

i (x)= BABXP(IKX) By, (x)= p,BEXD(-ikx)
= nKAEXp(ikx) — _nkBExp(— ik)
=k, (x) = 1k, (x)
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Wave function of the free translation motion has exact magnitude for
momentum, but the direction is arbitrary depends on the value of the
coefficients



Potential energy, V

Particle In a Box Hamiltonian

Motion of the particle limited by a wall

02 V(x)=0 for 0<x<L
H=T+V=2%+V(x)
2m V(x)=oo for x<0,x>L
wﬁ, wﬂ, Inside the box Is free particle
k2n2
v, (x)=Csinkx+ D coskx E, = ;
m

If the potential energy is infinity there is O
probability of existance

v, (x)=0 forx<Oand>L



Solving Particle in a Box

Wk(0)=CsinO+ DcosO=D=0
v, (L)=CsinkL =0

k = n_ﬂ n=1234.... Only integer values
L

n=0 is not allowed! Zero Point Energy
100 —ay,  EIQENValue defined by integer values of n
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Obtain the normalization Constant C
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Potential ene

Property of Solution

What is the average value of the position and
momentum for the nth state?
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What is the physical meaning of the above finding?
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Potential energy, Vix)

Orthogonality

Show that n=3 and n=4 wavefunctions are orthogonal
jl//n =3 Wn =4 )dXZO

Correspondence to classical
Wavefunction mechaniCS  rrobabiity bensity
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Boundary Condition and
Quantization

The energy is quantized due to the fact that the
wavefunction is zero at boundaries

Box with a Constant Potential Energy

0’ V(x)=V  for 0<x<L
H=T+V=2%+V(x)

2m V(x)=oo for x<0,x>L
2 2
for O<x<L t __"n d _
Hy (x)= =2 ——zw(X)+Vy(x)= Ey(x)

What is the solution for E>V ?

If the potential energy is infinity there is O
probabillity of existance

v, (x)=0 forx<Oand>L



Penetration of a Barrier 1

zonel (x<0) V(x)=0 What are the general
zone2 (0<x<L) V(x)=V  answerin each zone?

zone3 (x=L) V(x)=0

Zone 1
o w,(x)= AExp(ikx )+ BExp(—ikx)
8 {%{] NF kn=VEEE
g ,l L] | .. Zone 2
HIRN N (0= AExplik x)+ B Explik'x)
U 'n=ZM(E V)
E| 1 Zone 3
0 L % y,(x)= A"Exp(ikx)+ B"Exp(-ikx)
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Penetration of a Barrier 2

Consider E<V: In classical sense no transmission between
zone 1 and zone3

Zone 2 How do we find values of coef?
w,(x)= A"Exp(-xx)+ B'EXp(xX) From the connection of wave
KM = \/2m(v _ E) function
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Penetration of Barrier 3

Continuation of Wavefunction and its derivative

,(0)=y,(0) v,(0) _ dy,(0)

dx dx
Wz(L):Ws(L) sz(L): dWs(L)
dx dx

What are the conditions that are possible?



Penetration of Barrier 4

A+B=A+B'

IKA—ikB = —xkA'+xB'

A'Exp(— )+ B'Exp(xL) = A"Exp(ikL )+ B" Exp(-ikL)

— 1A' Exp(— «L )+ xB' Exp(xL) = ikA" Exp(ikL ) — ikB" Exp(—ikL)
Now we assume that the initial state of the particle is
approaching the barrier from the left B” is zero

Incident wave
L2 A+B=A+B

Transmitted . : : ,

wave ; IKA—I1KB = —xkA'+xB

) \ A Exp(— )+ B'Exp(xl) = A"Exp(ikL )
o — kA" Exp(— L)+ xB'Exp(xL ) = ikA" Exp(ikL)

Reflected wave




Penetration of Barrier 5

From the afore mentioned conditions show that

2 2 2
Azzzl_l(K_kj +1(K+k) cosh(2xl.)
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Transmission probability T is the ration of the probability

travelling to right in zone 3 versus zone 1
- -1

T = ‘A"‘Z — 1+ (EXp(KL)— EXp(— KL))2
A 16E(I—Ej

For high, wide barriers («x.>>1) T zlGS(l—éjExp(— 2KL)



Penetration of Barrier 6
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Incidhent energy, ES

For wide and large barriers transmision is small
Transmission probability decays with square root of mass
TUNNELING is important for light particles



